The Summer Adventure 2022 Part 2 – Regroup and Repair

12th to 19th August Back in Droitwich Spa Marina

On the way back we had to make the obligatory stop at The Queen’s Head for Pizza, we where lucky to get a table, it is very popular in the summer.

Pizza at The Queen’s Head

While I have all the tools for fixing such eventualities, my hands have suffered over the years and my thumbs are not working very well, so luckily, we had made the acquaintance of Steve Cowham, of STC Marine Engineering, who was happy to do the repairs, and worked very efficiently getting us ready to head out again.

Steve Cowham repairing Floydtilla

A new Jabsco Par-Max HD4 water pump was ordered from Midland Chandlers, that was a quick couple of hundred pounds, but it arrived the next day as promised.

We even fixed an annoying leak on the top seal of our Calorifier/hot water tank with parts from Screwfix and also replaced a faulty bilge pump.

Leaking Calorifier/Hot Water Tank – Needed new seal from Screwfix

During this time while Steve and I played with the boat, Sonia and Mary went to Birmingham on the train, and looked around Droitwich.

The Summer Adventure 2022 Part 1 – The Plague Boat

August 5th to 12th The Plague Boat

Our plan this year was that my brother and his family would start the holiday on the boat taking Floydtilla from Droitwich Spa Marina to somewhere in Birmingham, this would take them up the Tardebigge Lock flight, a task on its own, especially with two young children. 

Make the children work the locks, much better than a beach holiday

Unfortunately for them their youngest had picked up a tummy bug (The Plague), which over their week spread around the family, and then to make things worse the water pump decided to fail, they made valiant attempts to get things fixed but, in the end, they moored up at Alvechurch Marina and the survivors of the tummy bug travelled out to Birmingham on the train.

So, a week after they had set off, we arrived at Alvechurch Marina to relieve them, by this time my brother was feeling better so we tock him to Droitwich Spa Marina to collect his car and leave ours at the marina, then back to Alvechurch Marina and we took over the plague boat, which they had cleaned every surface ready for us.

We decided we would head back to Droitwich Spa Marina so it’s back down the Tardebigge Lock flight to our home mooring to make repairs.

New Curtains

After a trip to Ikea where we selected some new curtains, that will need to be shortened and adapted, each original made 3 new curtains for the boat after cutting and a new heading tape was fitted.

Sonia is a dab hand at making and adapting these for the boat and these are much more lively than the originals.

This one is in the lounge area, and the ones in the bedroom areas have been fitted with a blackout lining so we can sleep in on bright sunny summer morning…

Batteries and Battery Monitors Part 4 – Battery Monitor & The Shunt

Our Battery Monitor

I have installed a Victron Energy BMV-712 Smart battery monitor, but there are many other options from other manufacturers, see the listing at the end of this article.

I selected this one as it gave me the opportunity to connect to my onboard Raspberry Pi which I am using to give some smart boat features and provide live location tracking for my website in the future.

Our Battery Monitor Display
Our Battery Monitor Display

The battery monitor comes in two parts, a display which provides a readout of the battery status and a means of programming/setting up the system for your configuration.

The Shunt

Victron Shunt
Victron Shunt (c)Victron

The second part is called a shunt, this needs to be placed, in our case, on the negative side of the battery bank, so that everything must pass through it to reach the battery, there should be no other connections to the negative side of the batteries else your measurements will never be accurate.

A shunt is a resistor of very low but known value that is placed in parallel with a voltmeter so that all the current being measured flows through it. The voltage drop across the shunt’s resistor is measured; this voltage drop across the shunt is proportional to the current flowing and can then be calculated using Ohms law (Current = Volts / Resistance).

Shunts are rated for the maximum current they can measure, in our case 500A which at 12V is 6000W, more than enough for our boat.

Basic Battery Monitor Wiring
Basic Battery Monitor Wiring

The battery monitor also has an extra cable that connects to the positive side of the battery bank to power the electronics and the display, but also to measure the current battery voltage, we have an extra wire connected to the starter battery, so we can monitor its voltage as well.

Peukert’s Law

To then calculate the remaining capacity of the battery, the monitor uses an adaptation of Peukert’s Law** which can be used to calculate the capacity of lead acid batteries at different rates of discharge.  As we discussed earlier, the discharge rates affect the battery capacity.

** Developed by Wilhelm Peukert (1855-1932) Peukert’s law is used to calculate the batteries deliverable capacity at the current given rate of discharge, His law describes the batteries capacity at a constant discharge until it reaches its cut off voltage, below which you can damage your battery, this constant is called ‘K’, for example K=1.25 is used for our flooded lead acid batteries. There are however some limitations to this law as it does not consider the batteries temperature or age. I expect each monitor manufacturer modifies this to consider these extra factors when displaying the results, our system records each battery charge/discharge cycle.

The capacity of a battery falls at higher rates of discharge because the chemical reaction within the battery reaches its maximum speed for the given plate size and therefore the voltage drops. If left to recover, that missing capacity will return.

Using these calculations, a battery monitor can calculate the available power remaining while the battery is in use (under load) and as that load changes or even as the battery is charging, it can display the current State of Charge (SOC).

Now you know what is happening?

Armed with this information, you can then decide how you want to operate your boat and if you will need to start the engine to charge the batteries. One of our future projects is to work out the size we need for some solar panels, and we will use the data from the battery monitor to help calculate the size system we need, but that is a topic for another day

Battery Monitors Suppliers

Victron – www.victron.com
NASA Marine Instruments – www.nasamarine.com
Advanced Yacht Systems – www.advanceyacht.co.uk
Simarine – simarine.net/
Votronic – www.votronic.de

Safety Disclaimer

Batteries and Battery Monitors Part 3 – The State of Charge (SOC) Calculation

The State of Charge (SOC) Calculation Lead Acid batteries

Voltage only gives a rough estimate of State of Charge (SOC), the table below is just an example, the voltages can change significantly when the battery is under load, in most canal boat there is always something using the battery, our fridge while efficient is always on, so to measure this properly you need to have the battery disconnected  and allowed to rest for up to a couple of hours (Not always the simplest thing to arrange).

Capacity % Resting Voltage**
100% 12.70 V
90% 12.50 V
80% 12.42 V
70% 12.32 V
60% 12.20 V
50% 12.06 V

**Note: Example Only – typical lead acid battery. Best to check with your battery supplier if you use this method.

For your battery monitor to be effective you need to get the battery to a known state of charge to set a base/synchronisation point for future calculations. This is typically done when the battery is at 100% State of Charge (SOC).

Original Battery Setup
Our Original Battery Setup

You can tell when a battery is fully charged by looking at the battery charger. When you charge a battery, the charger will start at its maximum current; this is known as the boost phase, during this, the voltage of the battery will increase to near the gassing voltage.

What is Gassing and why is it so bad

Gassing is basically very bad, as gassing mean that the current applied to the battery is not being used to transform the plates back to their fully charged state but is breaking the water down to Oxygen and Hydrogen, which is a highly explosive mixture, try to remember back to school science lessons and electrolysis.

A smart battery charger will monitor the batteries internal resistance so then when it reaches near 80-85% charged it will switch over to the next phase known as the absorption phase. The last 15-20% will take a lot longer for a battery to absorb. It was explained to me much like the seats in a cinema, when the cinema is empty it is easy to find a seat, but as the cinema fills up the available spaces are harder and harder to find and fill.

The Float Phase

Once charging is complete the charger will switch to the float phase, where the voltage is kept at a point to maintain the battery capacity, this is often referred to as trickle charging.

State of Charge (SOC)

With the battery now at 100% charged, we have our known State of Charge (SOC). A battery monitor can use this to calculate what usable power is available while monitoring further charging and usage of the battery.

Safety Disclaimer